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Abstract 

 This paper is an introduction to the Riemann Hypothesis and the related Riemann Zeta 

function. We discuss what the Hypothesis is and why it has remained a pertinent mathematical 

question for 155 years. In addition, we cover the Riemann Hypothesis’s history, its implications 

in various fields of science, and popular methods for approaching it. This paper also includes 

tutorials to related concepts in mathematics and physics as well as proofs of selected 

mathematical results. 
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Introduction 

 The Riemann Hypothesis is one of the most famous math problems of all time. It was 

first suggested in 1859 and remains unproven to this day, despite being one of the most 

fascinating problems in the world for mathematicians. In 1900, it was chosen by German 

mathematician David Hilbert to be on his list of 23 key problems from various fields of 

mathematics, and in 2000, it was selected to be one of the seven Millennium Problems—the first 

person to prove or disprove the Riemann Hypothesis will receive one million dollars.  

Essentially, the Riemann Hypothesis guarantees the randomness of the prime numbers—

if it is false, then there will be some pattern to the primes’ distribution among the positive 

integers (du Sautoy, 167). In addition, if the Riemann Hypothesis is true, many mathematical 

formulas will be true, including one that tells us how the number of prime numbers less than a 

certain quantity behaves (Sabbagh, 29). 

 This means that the Riemann Hypothesis is crucial to number theory (the study of 

integers) and to math in general. But this does not mean that it should only be treated as a “pure” 

math problem. The Riemann Hypothesis is also related to applied math and science—particularly 

fields such as statistics and physics. Because of this, ideas stemming from the fields of 

probability theory or the study of subatomic particles could very well be the key to solving the 

Riemann Hypothesis—and, by extension, to the multitudes of other math problems that are 

similar to the Riemann Hypothesis. Thus, although mathematicians pursue a proof of Riemann 

Hypothesis, they do not merely seek to say “yes, it is true.” Rather, they search for new insights 

and reasoning with which to approach this problem—and hopefully, future problems. 
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About Riemann 

 The Riemann Hypothesis takes its name from Georg Friedrich Bernhard Riemann, who 

was born September 17, 1826, in Hanover, Germany. From an early age, Riemann was interested 

in mathematics: at six, he invented problems for his teachers, while at ten he learned advanced 

arithmetic and geometry from university professors—and often had better solutions than they did 

(Hunsicker)! When he was fourteen, Riemann began attending gymnasiums, or college 

preparatory schools, where his teachers noticed and nurtured his talent. One teacher is said to 

have lent him a dense mathematical book (of 859 pages) on number theory—Riemann mastered 

the book in six days (du Sautoy, 62).
 

 Later in life, Riemann studied and worked at the University of Göttingen, where  

he continued to demonstrate impressive mathematical skill. For example, when at the age of 28 

he applied for the position of unpaid lecturer, he had to give a trial lecture to the faculty of the 

school—which included Carl Friedrich Gauss. Even in the 1800s, Gauss was recognized as one 

of the most famous mathematicians and physicists of all time, an expert in fields such as 

geometry, number theory, astronomy, and electromagnetism. For example, he proved the 

fundamental theorem of algebra, helped to invent the electromagnetic telegraph, and calculated 

the position of the asteroid Ceres when astronomers lost track of it in 1801 (Simmons, 178-181). 

Moreover, at the time of Riemann’s lecture Gauss had been thinking about Riemann’s topic—the 

foundations of geometry—for the past sixty years. Yet even Gauss was surprised and impressed 

by Riemann’s insight on the topic. In fact, Riemann’s ideas were eventually found to be crucial 

not only to pure mathematics, but also to Einstein’s General Theory of Relativity (Simmons, 

203).  
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In number theory, Riemann wrote only one paper, and a very brief one at that—it is only 

nine pages long. Yet in “On the Number of Prime Numbers less than a Given Quantity,” which 

he published in 1859, Riemann made several highly profound remarks about the Prime Number 

Theorem. The first version of the Prime Number Theorem was proposed by Gauss when he was 

only fifteen years old; a second variation was suggested by the French mathematician Adrien-

Marie Legendre in 1808, and a third form was discovered by Gauss around 1849 but not 

published until after his death. This theorem says that for larger and larger quantities, the number 

of prime numbers less than or equal to that quantity—the prime counting function—becomes 

closer and closer to a certain expression. In his 1859 paper, Riemann stated an expression 

slightly different from any of Legendre’s or Gauss’s, believing that it was more accurate. (It 

turns out that this is true for many numbers, but sometimes Gauss’s approximation for the prime 

counting function is still the more exact (du Sautoy, 129).) However, Riemann did not realize 

that if a certain hypothesis—the now-called Riemann hypothesis—in his paper is true, we will 

know not only the expression that the prime counting function approaches, but also the amount 

with which it can differ from that expression. (A formula for this amount was discovered in 1901 

by the Swedish mathematician Helge Von Koch, who we will mention again later.) 

 Although Riemann’s work was of extremely high quality, we have very little of it. Not 

only did Riemann die when he was thirty-nine, he only published a few papers during his 

lifetime—he was a perfectionist, refusing to share ideas until he was sure they were flawless 

(Hunsicker).
 
It is true that he had many more ideas than those he revealed to the public, but after 

he died, many of his unpublished notes were deemed junk and destroyed by his housekeeper. 

Moreover, many of Riemann’s rough drafts and other papers contained both mathematical ideas 

and personal notes, which made his family reluctant to publish those of his writings that 
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remained. Over the years some of Riemann’s papers made their way to libraries, but many others 

have been irrevocably lost. (du Sautoy, 101, 153-154). This means that the mathematical 

community will never fully know what Riemann was capable of. Yet it is true that what work he 

did leave behind was highly important. He interlinked analysis (the field of mathematics 

involving limits) with geometry. He created the Riemann integral, a fundamental part of calculus. 

His ideas on the foundations of geometry proved to represent space as it is described by general 

relativity. And he invented the Riemann zeta function, which is related to statistics, physics, and 

prime numbers. The Riemann Hypothesis, one of the most important problems of all time, 

revolves around Riemann’s zeta function:  

The Riemann Hypothesis:  

All non-trivial zeros of the zeta function have real part one-half. 

 

A Brief Tutorial 

This section will provide an introduction to some mathematical concepts and notations 

that are important components of the Riemann zeta function and the Riemann Hypothesis: 

functions, the different types of numbers, the concept of infinite sums and products, 

exponentiation, and prime numbers. 

 

Functions 

 A function is a mathematical procedure that takes in a certain variable (number) and 

returns a unique value. For example, we can define a function   to return the square of its input: 

       . (Note that     , read as “f of x,” is the value that the function   returns when we 
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input the variable  .) Sometimes we can leave out the parentheses around the argument, or input 

variable. For example, given that    is the symbol for the natural logarithm function and   is the 

argument, we write the natural logarithm of   as    . 

The Types of Numbers 

Numbers can be divided into multiple classes and subclasses: 

 Integers: numbers such as                              

 Rational numbers: integers together with fractions (both positive and negative) 

 Irrational numbers: numbers which are not integers and cannot be written as fractions. 

Examples include √     and  . (We can approximate these three numbers by         

          and         , respectively, but they lack exact decimal or fractional 

representations.) 

 Real numbers: rational and irrational numbers. 

At this point it may seem as if we have covered all numbers which exist. But there are other 

classes of numbers: 

 Imaginary numbers: these numbers can be written as the square roots of negative 

numbers—yes, square roots of negative numbers. If we limit ourselves to thinking about 

real numbers, this seems impossible, since we know that a number multiplied by itself is 

either zero or positive (a positive times itself is positive, and a negative times itself is also 

positive). But if we expand our thinking somewhat, we can envision a number that is 

equal to the square root of negative one and assign it a symbol:    

  √   
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Then, other imaginary numbers can be written as   multiplied by some real number. For 

example, we can say that √   √   √     , and that √ 
 

 
 √

 

 
 

 

 
  √   

 

 
 . 

 Complex numbers: the largest class into which numbers can be categorized. Complex 

numbers include all numbers, including those that are purely real and those that are 

purely imaginary. The general form of a complex number is        , where   is the 

real part of   while   (not   ) is the imaginary part. Another way to express   and   is 

        and        . Note that the numbers   and   themselves are real. (So, if 

               ,  we write        ,  not          .)  

Under this notation, the real number   can also be considered complex since we 

can write it as     . Similarly, an imaginary number is also considered to be complex 

(for example,        ). 

 

The Concept of Infinity 

Our discussion of the Riemann zeta function will involve both infinite sums and products. 

An example of such a sum would be 

∑
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
   

that is, “the sum over all n of 1 over n.” “All n,” though, is usually interpreted to mean “all 

positive whole numbers”: 1, 2, 3, 4, and so on. 

 In the above expression,   is the capital Greek letter sigma. We use it to denote a sum 

(sigma is the equivalent of our letter s.) Similarly, we use a capital pi (the Greek equivalent of p) 

to denote a product, as in  
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∏ 

 

           

 In both of the above expressions, we have dealt with infinite sums or products—  takes 

on an infinite number of values. Now, infinity can be a confusing concept. A classic example is 

the answer to the question “What is two times infinity?” The answer, of course, is infinity. But 

we know that no number other than zero can equal two times itself. Thus infinity is not a specific 

number like       (1 with a hundred zeros). Because of this, mathematicians do not say that 

something “equals” or “is” infinity, as these terms imply that infinity is a specific number. 

Instead, they say that a very large number “approaches infinity.” (For practical purposes, though, 

mathematicians often write that an expression   .) 

 It is fairly apparent that an infinite sum can approach infinity. For example, 

∑ 

 

             

increases without bound; it approaches infinity. 

 But now evaluate  

∑ 

 

 

Even though we have added up an infinite number of zeros, the sum is still zero.  

 An infinite sum can also be exactly equal to a number other than infinity, negative 

infinity, or zero. As an example, 

∑
 

  

 

 
 

 
 

 

 
 

 

 
 

 

  
   

is exactly equal to 1. This is possible because although we add up an infinite number of positive 

quantities, these quantities eventually become infinitesimally small, and the balance between the 

two extremes of infinity is such that the sum is a finite, positive number. Infinite products can 
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behave in a similar way; just because we multiply an infinite number of quantities does not mean 

that the final answer is zero or infinity. 

 If an infinite sum or product is exactly equal to some finite number (including, potentially, 

0), then we say that it converges. 

Exponentiation 

 Exponentiation is the process of multiplying together a certain number of identical 

numbers. This is denoted by   , or “  raised to the power of  .” In this expression,   is the base 

(the quantity being multiplied) and   is the exponent (the number of  ’s that are multiplied 

together). For example,           . 

 It looks as if exponentiation defined in this way is limited. After all, how do you multiply 

2 by itself 
 

 
  or    times?  

So mathematicians have extended this definition to apply to exponentiation with any base 

and any exponent. Exponentiation revolves around two rules, which hold for any numbers  ,  , 

and   (note that these numbers do not even have to be real): 

Rule 1:               

Rule 2:                     

By using these rules, we can deal with any real exponent. For example: 

      for all   except for    . This is because according to Rule 1,       

       , and thus (since    is simply  ) 

   
 

 
   

The exception occurs when     since then 
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which is undefined due to the division by 0. 

      is the  th root of  , if   is a positive integer. This is because according to Rule 2, 

            , so      is the number which, when multiplied by itself   times, 

results in  . 

     
 

   for all     and any number  , since by Rule 1, we must have        

          . (Again, the exception occurs when     because we cannot divide 1 

by     .) 

So we can evaluate, for example,        . By our logic above, 

               
 

     
 

According to Rule 2,  

      (     )
 
      

since 2 is the fourth root of 16. Then  

        
 

     
 

 

 
 

Exponentiation is also defined for nonreal exponents: in general, if we have the complex 

number        and a real number  , then 

        

where   is a complex number that depends on the value of  .  

 We can even define exponentiation for nonreal bases—in fact, there is a general 

definition for exponentiation with a complex base and complex exponent. However, this is 

beyond the scope of this paper, and is not required to understand the zeta function. For now, 
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suffice to say that it is possible to raise a positive integer   to the power of a complex number  . 

This is a key part of the definition of the Riemann zeta function. 

 

Prime Numbers 

 A prime number (sometimes called a “prime integer” or simply a “prime” (Weisstein, 

“Prime Number”)) is a positive integer that can be divided by exactly two positive integers: 1 

and itself. Positive, non-prime integers are called composite, with the exception of 1—it is 

neither prime nor composite
1
.
 
 

The first few primes are                        , and   . One interesting fact about 

primes is that there are infinitely many of them, as was shown by the Ancient Greek 

mathematician Euclid around 300 B.C.E. We include Euclid’s proof of this result as Proof 1 in 

Appendix A. 

 

The Riemann Zeta Function  

Riemann’s 1859 paper revolved around  , the Riemann zeta function, or, as it is 

sometimes called, the zeta function. (The Greek letter “zeta” can be pronounced either “ZAY-ta” 

or “ZEE-ta”.) Following the notation that Riemann originally used, we typically use the symbol 

  to indicate the zeta function’s argument. For certain values of  , we define zeta of   as 

     ∑
 

  

 

   
 

  
 

 

  
 

 

  
   

that is, “the sum over all n of one over n to the s.” Other, more general definitions of the zeta 

function
2
 exist, but none of them are quite as elegant and simple as this one. 
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Riemann was not the first important mathematician to do work on the zeta function—as 

early as 1737, the Swiss mathematician Leonhard Euler was studying it (Simmons, 294). (Euler, 

pronounced “OI-ler,” lived from 1707 to 1783. He invented much of our mathematical notation 

and was so important to mathematics that some say that modern-day calculus textbooks are all 

copies of Euler (Simmons, 162).) In 1737, Euler discovered that when   is a real number greater 

than 1,  

     ∑
 

  

 

 ∏
   

  
 
   

 

where the product on the right is taken over all prime numbers (recall that there are infinitely 

many of them). A derivation of Euler’s result is provided as Proof 2 in Appendix A. 

 Riemann continued Euler’s work—he extended the definition of the zeta function from 

situations in which   must be real to more general cases in which   is a complex number, and it 

is for this accomplishment that the zeta function is named after Riemann. Moreover, Riemann 

noticed that the above relationship between      and prime numbers can be generalized to 

situations where   is not real; however, the real part of   must be greater than 1, or the sum on 

the left side will not converge. (For a derivation of this general relationship, see Proof 3 in 

Appendix A.) Despite this restriction on  , this relationship was still a very important result: it 

relates      to the prime numbers. In fact, it was the first inkling of the intricate relationship 

between the zeta function’s zeros and the prime numbers. 
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What is the Riemann Hypothesis? 

The Riemann Hypothesis states that all non-trivial zeros of the zeta function have real 

part one-half. We have already seen a definition of the zeta function. What, then, are the non-

trivial zeros of the zeta function? The zeros or roots of      are the values of   such that 

      . (Either term is equally valid; for the sake of consistency, we will exclusively use the 

term “zero.”) A trivial zero is one that we can see with comparatively little work. For example, if 

we wanted to find the zeros of the function          , an obvious (trivial) zero would be    , 

since this makes       and so                   . (Naturally, the term “trivial” is 

subjective—trivial zeros are comparatively obvious to find.) 

Returning to the Riemann Hypothesis, we see that it makes a statement about the zeta 

function’s non-trivial zeros. This raises the question—what are the trivial zeros? It turns out that 

the trivial zeros of the zeta function are just all the negative, even integers (             ). 

This seems like a contradiction. After all,  

     ∑
 

  

 

   
 

  
 

 

  
 

 

  
   

If we substitute      , we have 

      ∑
 

   

 

 ∑
            

 
   

 

 ∑  

 

            

This is an infinite sum of positive numbers, which is certainly not zero. Unfortunately, this 

expression for      is not valid when     .  

     ∑
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only holds when the real part of   is greater than 1—for all other numbers, we must use a more 

explicit form of     , which will be valid in general (in fact, it is true for all   except for    ).  

One formula for     , first expressed by Riemann in his 1859 paper, involves calculus, so 

we will not analyze it here. However, it is also possible to solve for      in terms of       : 

              (
  

 
)              

(Note that  , the Greek letter gamma, represents a function.) This is called the functional 

equation of the zeta function. 

 This equation holds for all   (except for    ;      can never be defined). Using this 

general equation, we can show, as we do in the Appendix B, that when   is a negative multiple of 

2,      is 0. Thus the trivial zeros of the zeta function are universally defined to be all the 

negative multiples of 2.  

We can show the difference between the trivial and non-trivial zeros of the zeta function 

by plotting their values in the complex plane, which is a coordinate plane resembling our 

ordinary xy-plane. However, instead of the x-axis, we have the real axis; instead of the y-axis, 

we have the imaginary axis. The complex number           (  is the Greek lowercase letter 

sigma
3
 and    is pronounced “sigma-nought”) is plotted as below in Figure 1: 
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Figure 1: the number           plotted in the complex plane. 

 

When we graph the zeros of      in the complex plane, the trivial zeros are all real, so 

they lie on the real axis (the horizontal line). The other points in Figure 2 are the non-trivial zeros 

of the zeta function; if the Riemann Hypothesis is true, then they should all have real part 
 

 
. In 

other words, they should lie on the critical line, the vertical line   
 

 
 (here depicted in bold). 

 

Figure
4
 2: The zeros of the zeta function in the complex plane. 

Real axis ( ) 

Imaginary part =    

Real part =    

         

Imaginary axis (    
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Note that the Riemann Hypothesis only concerns itself with non-trivial zeros. As a result, 

we will from here on use the term “zeros of the zeta function” to refer to non-trivial zeros, unless 

otherwise stated. 

 

Where to Look for Zeros? 

 Ever since the Riemann Hypothesis was first suggested, over 150 years ago, 

mathematicians have been trying to prove or disprove it. Those who wish to prove the 

Hypothesis must make sure that all possible zeros lie on the critical line; those who wish to 

disprove it must find at least one zero off the line. So, must we search the entire complex plane 

for zeros? 

The answer turns out to be no—over the years various discoveries have established that 

zeros can only occur within a certain region: specifically, within the critical strip. For example, it 

has been found that      has no zeros with real part greater than 1 (see Proof 4 in Appendix A 

for a proof of this result). It is also known that the only zeros with real part less than zero are the 

trivial zeros—the negative even integers. (This result is proved in Proof 5 of Appendix A.) 

Moreover, no zeros lie on     or    . Taken together, these statements mean that all non-

trivial zeros of      must lie in the critical strip      . This considerably narrows the 

domain for possible zeros. 
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Figure
5
 3: The critical strip (shaded) and the critical line (in bold).

 

The dashed lines indicate that zeros cannot occur on those lines. 

 

Also, all of the zeta function’s zeros (both trivial and non-trivial) must be symmetrical 

about the real axis, and the non-trivial zeros of      are symmetric about the critical line (  
 

 
 ). 

This information can be deduced from the zeta function’s alternative forms and its functional 

equation (Goodman and Weisstein).  

This means that if there is a single zero off of the line, there are actually three more 

“companion” zeros that do not lie on the line. (One exception occurs if this zero lies on the real 

axis: then there is only one “companion” zero. However, it has been confirmed that no zeros in 

the critical strip lie on the real axis, so we can ignore this special case.) 
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Figure
6
 4: a hypothetical zero that does not lie on the critical line (largest dot), 

and its three “companion” zeros (smaller dots). 

 

Because of this, when we search for zeros, we need only look within the critical strip and above 

the real axis—all zeros below the real axis have “companion” zeros above the real axis. In 

addition, if there is a zero to the left of the critical line, there will be a zero to the right, and vice 

versa. 

  

Proofs, Disproofs, and Counterexamples 

It may seem that disproving the Riemann Hypothesis is easier than proving it, since one 

would simply need to find a solution        to        that does not lie on the critical 

line—a counterexample. However, counterexamples are not necessarily disproofs. 

It is true that the Hypothesis states that all non-trivial zeros of the zeta function should lie 

on the critical line—so if even one zero is not on the line, the Hypothesis as previously stated is 
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false. Yet if the twenty-trillionth zero (and its three “companions”) does not lie on the line, while 

all other zeros do, can’t we say that the Hypothesis is mostly true, except in a few special cases? 

The Clay Math Institute, which offers the million-dollar prize for a proof or disproof of 

the Hypothesis, makes this condition. If this situation was to happen, and the Riemann 

Hypothesis “[survived] after reformulation or elimination of some special case” (“Rules for the 

Millennium Prizes”), the Institute would not present the prize. It might give a smaller award, but 

not the million dollars—that prize is for a rigorous proof or disproof or for a counterexample that 

unquestionably proves the Hypothesis false (“Rules for the Millennium Prizes”).  

This distinction between a disproof and a counterexample is a fine but important one. 

Although proving—or disproving—the Riemann Hypothesis would be a massive 

accomplishment, mathematicians do not seek the result as much as they do the process. After all, 

as of right now we do not even know if the Hypothesis can be proved. Perhaps it is a statement 

similar to “  equals 1.” We do not know what   is—it might be  , or it might be      —and 

without further information we cannot come to a conclusion about the statement. In a similar 

way, maybe the Riemann Hypothesis actually cannot be shown to be true or false. 

So mathematicians are really trying to find whether it is possible to prove the Riemann 

Hypothesis. Simply churning through all the zeros and testing if they lie on the critical line is 

useful for seeing if the Hypothesis holds true for the first few zeros, but in the long run, it is 

inelegant, and it is no proof. Similarly, finding a single zero that lies off the critical line is not 

necessarily a disproof. Of course, this does not mean a zero off the critical line will be ignored. 

Rather, if one is found, mathematicians will continue trying to discover if the Riemann 

Hypothesis is true in general or not—and, more importantly, why it is true in general or not.  
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The History of the Riemann Hypothesis 

When Riemann first suggested his Hypothesis, he did not actually state that “all non-

trivial zeros of the zeta function have real part one-half.” Instead, after eliminating trivial zeros 

from consideration, he related      to another function of the variable  , where   
 

 
    . 

Riemann then noted that      would only have zeros when the second function was zero, and 

hypothesized that this could only happen when   was real…which would make   have real part 

one-half. Unfortunately, Riemann had no proof of this claim. “Certainly one would wish for a 

stricter proof here,” he said. “I have meanwhile temporarily put aside the search for this after 

some fleeting futile attempts, as it appears unnecessary for the next objective of my investigation 

[finding a better version of the Prime Number Theorem
7
]” (Riemann, 4). 

Over the years, no one has found a counterexample to Riemann’s Hypothesis. Computers 

have found that the first ten trillion (1 with 13 0’s following it) zeros of the zeta function all lie 

on the critical line (Goodman and Weisstein)—that is, for   ranging between   and about 2.4 

trillion, no zeros lie off the critical line. However, the positions of the zeros after the first ten 

trillion or so are not known. Only if all zeros of the zeta function lie on the critical line is the 

Riemann Hypothesis considered “proved”. As a result, various mathematicians have claimed to 

have proven the Hypothesis, and others have claimed to have disproven it, but so far all of these 

claims have been false.   

One of the earliest claims of proving the Riemann Hypothesis was that of the Dutch-born 

French mathematician Thomas Stieltjes (pronounced STEEL-ches). In 1885, he said that he had 

proven a stronger conjecture than the Riemann Hypothesis—a conjecture which, if true, would 

lead to the Hypothesis being true. However, his proof never surfaced, and the same conjecture 
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has since been proven false (Goodman and Weisstein). Undoubtedly Stieltjes found a mistake in 

his reasoning after making his announcement. 

More recently, Louis de Branges, a professor at Purdue University, spent many years 

pursuing a proof of the Riemann Hypothesis by working on a more generalized version of the 

problem. In 2003, he claimed to have a proof, but did not publish it—the approach that he had 

taken was flawed, as others had demonstrated as early as 1998 (Goodman and Weisstein).  

The opposite situation occurred in 1943: a German mathematician (Hans Rademacher, 

then a professor at the University of Pennsylvania) nearly published a disproof of the Hypothesis. 

He withdrew his claim at the last moment, when colleagues checking his work discovered a 

mistake in his paper (Sabbagh, 108-109).  

Of course, false proofs are not only written by famous mathematicians. Amateurs often 

send articles to mathematics journals, claiming to prove—or sometimes disprove—the Riemann 

Hypothesis. One journal received two papers from the same author within a week. One was a 

proof of the Hypothesis; the other was a disproof. The author also included a letter to the journal, 

asking which of the two papers was correct (Sabbagh, 112). 

Despite all these failures, it is true that progress has been made in the quest to prove the 

Riemann Hypothesis. In 1914, G. H. Hardy, a professor at Cambridge and later, Oxford, proved 

that the zeta function has an infinite number of zeros with real part 
 

 
. This result was an 

important step towards proving the Riemann Hypothesis, but does not prove that all non-trivial 

zeros have real part 
 

 
 —we might also have infinitely many zeros that do not have real part 

 

 
.  

Also, around 1990, several mathematicians found that at least 40% of the non-trivial zeros will 

lie on the critical line. Again, this was an important result, despite not proving the Hypothesis 

(Goodman and Weisstein).  
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The mathematical community’s passion for the Riemann Hypothesis is sometimes played 

on. One famous example occurred in 1997 when Enrico Bombieri, a professor at the Institute for 

Advanced Study in Princeton and winner of a Fields medal (the math equivalent of a Nobel 

Prize), sent his friends an email. A young physicist had seen how to use “the physics 

corresponding to a near-absolute zero ensemble of a mixture of anyons [a type of elementary 

particle] and morons [sic] with opposite spins” to solve the Riemann Hypothesis! Word spread 

around the globe within a few days, and mathematicians around the world eagerly awaited 

details of the proof (du Sautoy, 2-4). Unfortunately, the email was revealed to be an over-

successful April Fool’s Day joke. Yet although the joke revolved around physics solving the 

Hypothesis, this is not as absurd an idea as it may sound. Fields other than number theory may 

just be the key to proving the Riemann Hypothesis. 

 

Understanding the Riemann Zeta Function 

The very definition of the Riemann Hypothesis revolves around Riemann’s zeta function. 

As a result, studying the zeta function’s behavior will be important to any proof of the 

Hypothesis. 

Graphs 

We stated earlier that any complex number can be graphed in the two-dimensional 

complex plane. In a similar way, we can graph the Riemann zeta function      in four 

dimensions—two for the real and imaginary parts of   and another two for the real and 

imaginary parts of     . But here we run into a problem. We cannot physically draw more than 

three dimensions…so how can we create a picture of the four-dimensional structure of     ?  
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We do so by effectively reducing the number of dimensions to three—by holding one of 

the real or imaginary parts constant. In this way we observe “snapshots” of      –if   is the real 

part of   and   is its imaginary part, then for certain values of  , we can observe how the value of 

     changes as   varies and   stays at its predetermined value. 

In Figure 5, the  - and  -axes are the real and imaginary axes, respectively, of the plane 

that      is plotted in. We then observe how the value of      changes as   changes. The black 

line shows where       (that is, where we would have       ). The blue curve 

representing the zeta function curls around but never meets that line, so for       and values of 

  shown (from -7 to 4), the zeta function              has no zeros. 

 

 

 

 

 

 

 

 

 

Figure
8
 5: a three-dimensional graph of the zeta function when the imaginary part of   is      . 

 

We can also make two-dimensional graphs of the zeta function. For example, we can 

hold both the real and imaginary parts of   constant, making   a constant.  This allows us to 

graph the unique value of      in the complex plane. But because we only see a single value of 
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    , such a graph does not give us much information about the overall structure of the zeta 

function. A more useful way to view the zeta function in two dimensions is to plot many values 

of      in the complex plane and observe how they change as   varies
9
—this does not require us 

to look at “snapshots” of the zeta function’s graph. 

 A third way to graph the zeta function also does not require holding a real or imaginary 

part of   (or of     ) constant. Instead of keeping one part constant, we represent it using color, 

as in the graph below. (Figure 7 actually does not show the real and imaginary parts of 

      Instead, it shows two other numbers that uniquely define the complex number     —its 

magnitude and argument. In the complex plane, the magnitude of a complex number   is the 

distance between the origin and the point representing  . The argument of   is the angle 

measured counterclockwise from the positive real axis to the aforementioned point.) 

 

 

Figure
10

 7: A graph of the zeta function.  

The different colors indicate the value of the argument of     . 

Im( ) 

Re( ) 

Magnitude  

of      
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By analyzing graphs of all three types, we can gain an understanding of what the true, four-

dimensional structures of the Riemann zeta function looks like. 

 

Related Functions 

 There are many functions similar to the Riemann zeta function for which we have 

“Riemann Hypotheses.” For example, in 1940, the French mathematician André Weil 

(pronounced “Vay”) proved the “Riemann Hypothesis for curves over finite fields.” His proof 

showed that for a certain family of functions graphically similar to the zeta function, a function 

of that family must have its zeros lie on a straight line (du Sautoy, 295). 

 Other than functions that look similar to Riemann’s zeta function, there are also functions 

that are defined similarly
11

. For any one of these functions, if we could prove that it only has 

non-trivial zeros on the critical line, we would say that it satisfied the Riemann Hypothesis. 

Unfortunately, we have not proved this result for any of these similarly-defined functions. 

However, their study may lead to the discovery of new techniques—just as Weil’s work did 

(Thomas)—which may be of use in proving the original form of the Riemann Hypothesis 

(Conrey, 347-348). 

 Thus, it may be that a function that is graphically similar to the zeta function will help us 

to prove the Riemann Hypothesis. But it is equally possible that the key part of a proof will come 

from the relationship between the zeta function’s zeros and the fields of physics and probability. 
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Another Tutorial 

 This section will provide some background information on topics related to physics: 

energy levels, the theory of quantum chaos, and matrices. 

 

Energy Levels 

 Energy is quantized. This means that any amount of energy must be composed of a 

whole number of tiny packets—quantums—of energy. Thus, as the energy of an object increases, 

it does not increase continuously or smoothly. Rather, it increases with tiny, jerky additions of 

one quantum of energy at a time. (This is analogous to walking up a staircase, step by step, 

instead of riding up an escalator.) Note that the quantization of energy is only apparent at the 

atomic level—for macroscopic objects, it can easily seem as if energy increases continuously. 

 In addition, sometimes an object cannot increase its energy by exactly one quantum. For 

example, an atom is composed of a nucleus and several electrons orbiting the nucleus. The 

energy which the atom stores within itself comes from the interaction of each particle with the 

other particles around it; because of this interaction, the atom’s energy can only take on certain 

values, which may be separated by more than one quantum. (To extend the staircase analogy, 

imagine that several staircases are “added” to each other to create a staircase with uneven 

steps—the distances between consecutive steps may be several times that between the stairs on 

the original staircase. These steps represent the energy levels of the atom—the values that its 

energy can take on.) 

 But it is not only atoms that have energy levels. The energy of any system of two or more 

particles can only take on certain values, because the system’s individual particles interact in 

such a way to make other energy values impossible to reach. For example, atomic nuclei are 
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composed of protons and neutrons, so such nuclei have energy levels. In addition, when an 

electron is in a space bounded by other particles, the system composed of those particles and the 

electron has energy levels. 

 

Quantum Chaos 

 In physics, a certain system is chaotic if a slight initial change causes the system to be 

very different. For example, weather is chaotic—air moving in one direction might cause a gust 

of wind, while a slight change in its direction could cause a tornado. The word “quantum” refers 

to quantum mechanics (which studies the behavior of atoms and subatomic particles)—so 

quantum chaos refers to the combination of the concepts of chaos and quantum mechanics 

(Gutzwiller). 

 

Matrices 

A matrix is an array of numbers, such as: 

[
  
  

] 

A random matrix is a matrix whose elements are picked randomly from some previously-chosen 

range of numbers (which varies for different types of random matrices). 

If a matrix is square (the number of columns is equal to the number of rows), then it has 

a characteristic polynomial. The zeros of the characteristic polynomial are the matrix’s 

eigenvalues
12

. 

Matrices are related to physics because the eigenvalues of certain random matrices 

behave quite similarly to experimentally-observed energy levels—when two energy levels are far 
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apart, the corresponding eigenvalues tend to be far apart, and when the energy levels are close, 

the corresponding eigenvalues are usually close to each other. 

 

The Zeta Function’s Zeros and Physics 

Recall that an equivalent form of the Riemann Hypothesis is that if   is rewritten as 
 

 
   , 

non-trivial zeros of      only occur when   is real. (This is the form in which Riemann originally 

proposed the Hypothesis.) In other words, if we define a new function   such that      

 (
 

 
   ), all the non-trivial zeros of      should be real. (  is the Greek letter xi and can be 

pronounced either “zai” or “ksai.”) Thus, if we can relate      and its zeros to a function that 

only has real zeros, it may be possible to prove that the zeros of      itself are real, and thereby 

prove the Riemann Hypothesis. This approach is a popular one; in particular, many 

mathematicians have tried relating the zeros of      to the eigenvalues of certain matrices. 

In the early 1900s, two mathematicians independently suggested that the non-trivial zeros 

of      could be the eigenvalues of a special type of matrix: a Hermitian matrix
13

 (Derbyshire, 

277). (This idea is now called the Hilbert-Pólya Conjecture, after the two mathematicians who 

first proposed it.) If this conjecture is true, then the Riemann Hypothesis will immediately follow, 

because Hermitian matrices have the property that all their eigenvalues are real! 

Then, in 1972, the American number theorist Hugh Montgomery made a discovery that 

not only supported the Hilbert-Pólya Conjecture but also linked the Riemann zeta function and 

Hypothesis to physics. Montgomery had been studying the zeros of the zeta function—

specifically, the distances between those consecutive, non-trivial zeros that lie on the critical line. 

(Note that these distances correspond exactly to those between the real values of   such that 
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      .) Montgomery eventually discovered an expression that represented the statistical 

distribution of those distances, and after a chance meeting, told his result to physicist Freeman 

Dyson, of the Princeton Institute for Advanced Study. Dyson immediately said that 

Montgomery’s expression was the same as one used to study the behavior of the differences 

between eigenvalues of certain random Hermitian matrices (Thomas)—a subject that Dyson was 

familiar with because such eigenvalues are used to represent the energy levels of heavy atomic 

nuclei! 

 Based on this revelation, Montgomery hypothesized that all the statistics of real zeros of 

     will match the corresponding statistics of eigenvalues of random Hermitian matrices. If this 

is true, then the xi function’s zeros—and by extension, the imaginary parts of some of the zeta 

function’s zeros—probably represent the energy levels of some physical object (Conrey, 349).  

 Of course, we may wonder what type of material this physical object may be. One 

possible answer comes from the zeta function’s link to quantum chaos. During the 1970s, 

physicists began studying the energy levels of an electron (which are described by quantum 

mechanics) while the electron is enclosed in a small space. Depending on the space’s shape, the 

electron’s path may be regular or chaotic. If the path is regular, no relationship to the zeta 

function is seen, but if it is chaotic, the spacing between the electron’s energy levels behaves 

exactly like the spacing between the xi function’s zeros (du Sautoy, 276-279). In fact, the 

similarity between the two is even stronger than that between the zeros and the energy levels of 

heavy nuclei! This makes it even more likely that the zeta function’s zeros (each of which 

corresponds uniquely to one of the xi function’s zeros) are related to some type of physical 

object…one that can be described using quantum chaos. No one yet knows what this object 
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could be, although Freeman Dyson suggests a type of quasi-crystal (a sort of matter that has 

neither a perfectly ordered nor completely disordered structure). 

 Thus, there is a fascinating link between the zeta function and energy levels. But this is 

not interesting merely because of the resulting connections between physics, the zeta function, 

number theory, and prime numbers—if the xi function’s zeros are the energy levels of an actual 

object, then they must be real…and so the Riemann Hypothesis will be proved. In this way, 

physical objects may very well be the key to proving the Riemann Hypothesis. 

 

The Riemann Hypothesis and the Randomness of Primes 

As we saw in the previous section, the behavior of the Riemann zeta function is related to 

that of random matrices. Can it be that the Riemann Hypothesis is related to randomness? 

In fact, it is—through its relationship to prime numbers. The Hungarian mathematician 

Paul Erdős and the Polish statistician Mark Kac discovered this result: suppose that   is the 

number of primes dividing a positive integer  . The chance that  ’s value of   will fall in a 

certain range can be approximated by a certain formula—one saying that those   with a certain 

value of   are randomly sprinkled among all the positive integers (Guiasu, 111). In other words, 

the primes, which all possess    , have aspects of random behavior. 

A word of caution here: the distribution of prime numbers among the positive integers is 

not completely random. For example, between any number and its double, there must be at least 

one prime number. (This result is known as Bertrand’s Postulate or Chebyshev’s Theorem.)  The 

property that Erdős and Kac discovered means that when we consider the infinitely large interval 

of positive integers, the primes are randomly distributed within that interval. On intervals of 
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finite size, no matter how large they are, we cannot be sure whether the behavior of prime 

numbers is random, or whether it actually follows a pattern.  

As an analogy, consider a simplified weather system. Assume that it can only be sunny or 

rainy on any given day, and compare the number of sunny and rainy days within a certain period 

of time. We know that in the long run any day is equally likely to be sunny or rainy—rainy days 

are randomly dispersed among all of time. We also know that the distribution of rainy days is not 

truly random—suppose that it is known that we must have some rain every month. But given 

these restrictions, are rainy days randomly scattered within a single year? Or does it rain on 

many days, but always, consistently, on every 10
th

 day?  

This is the issue with the distribution of the prime numbers…on small intervals it appears 

to be random and patternless, but there could be a hidden rule governing it. So do prime numbers 

form a pattern? Or do they behave within the limits of randomness—are they as random as they 

can be, given the restrictions (such as Bertrand’s Postulate) that they are subject to?  

The answers to these questions are promised by the Riemann Hypothesis. If the 

Hypothesis is true and all of the zeta function’s non-trivial zeros lie on the critical line, the prime 

numbers are distributed in a mostly random way. But if zeros occur off the critical line, then the 

prime numbers are biased—they will form a pattern rather than a random collection of numbers. 

The farther the zeros are from the critical line, the more biased—and orderly—the prime 

numbers’ distribution is (du Sautoy, 163-167). 

Moreover, this idea means that if the prime numbers are arranged randomly, the Riemann 

Hypothesis is true. Of course, we cannot simply look at the prime numbers: 2, 3, 5, 7, 11, 13, 17, 

19, 23, 29,… and say that there is no pattern. But mathematicians who work with prime numbers 

have concluded that there is no obvious pattern to the prime numbers, a fact supported by the 
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knowledge that almost all of the zeta function’s zeros lie very close to the critical line (Conrey, 

344). Thus, although we do not know if there is a pattern to the prime numbers, we have the 

consolation of knowing that if a pattern exists, it is probably very slight—and if a zero of the zeta 

function lies off of the critical line, it is probably still very close. 

 

Why Address the Riemann Hypothesis? 

 In the almost 155 years since the Riemann Hypothesis was first proposed, countless 

formulas have been created that begin with the words “if the Riemann Hypothesis is true.” Not 

the least of these is a result proved in 1901 by the Swedish mathematician Helge von Koch (who 

also described the Koch snowflake fractal):  

If the Riemann Hypothesis is true,              √      

(The prime counting function, written as     , gives us the number of primes less than or equal 

to  . Note that this function is unrelated to the number       .)  

 The above expression actually gives us the error bound in the Prime Number Theorem: it 

turns out that       (the logarithmic integral
14

) is the expression that      approaches, and so the 

amount by which      can differ from       is   √     . 

 Thus, von Koch’s result seems to give an explicit formula for the prime counting function 

    . Unfortunately, it does not. Although    is a function, big-Oh, (the symbol in the term 

  √     ) is not—it does not output values. Instead, the expression  

             √      

means
15

 that for large enough  , 

            √     
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for some positive (and real) constant  . From this expression we do not know the exact value of 

    , but rather the way the function behaves. For large enough  ,      will never grow faster 

than       plus some multiple of √    .  

 This seems a trivial enough result, but it is the tightest known bound on     —and it 

depends on the validity of the Riemann Hypothesis. Thus, if the Riemann Hypothesis is true, we 

are one step closer to figuring out exactly how      behaves. 

But what is the practical point of knowing that the Riemann Hypothesis is true? Yes, all 

those mathematical formulas will be validated, but will humans gain anything by proving the 

Hypothesis? 

In an episode of the American television show NUMB3RS, a character claims that 

solving the Riemann Hypothesis would destroy internet security (Goodman and Weisstein). But 

that is fiction. True, prime numbers are essential to cryptography—the security of the RSA 

method, one of the most commonly-used encryption methods, depends on the difficulty of 

factoring a number into two extremely large primes. Yet for practical purposes, we already act as 

if the Riemann Hypothesis is true. Issues would only occur if the Hypothesis were revealed to be 

false. 

The general consensus is that the Riemann Hypothesis is true. As was pointed out by 

Erdős, if it were false, the primes would be arranged in some type of pattern—and so far we have 

seen none. Also, some feel that finding even a single non-trivial zero off of the line would be “an 

aesthetically distasteful situation” (qtd. in du Sautoy, 215) that contradicts Nature’s tendency to 

be elegant. Moreover, that first zero would be an extremely important mathematical constant, 

due to the zeta function’s relationship to prime numbers. Why haven’t we encountered this first 

zero in other formulas? Other mathematicians consider the trillions of zeros that do lie on critical 
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line sufficient evidence to believe the Hypothesis (du Sautoy, 218). So the majority of the 

mathematical community believes that the Riemann Hypothesis is true (Derbyshire, 356). Why 

can’t we just say that the Riemann Hypothesis seems true and move on? 

 The problem is that if the Riemann Hypothesis has not indisputably been proven true, it 

might still be false, and the fact that trillions of zeros do lie on the critical line does not prevent 

this from happening. After all, Gauss had hypothesized that his expression for the prime counting 

function would always be greater than the actual function, but in 1914 (about 60 years after 

Gauss died) it was discovered that this is not true. Later on, it was found that the first time that 

Gauss’s expression is smaller than the prime counting function occurs somewhere around  

        

 

a gigantic number which is not an important mathematical constant in any other formula. A 

similar turnabout could happen with the Riemann Hypothesis—yes, all known zeros of the zeta 

function lie on the critical line, but this does not mean that all zeros will do so. Perhaps we will 

find that the quadrillionth zero lies off of the critical line. (One quadrillion is a thousand trillion, 

or 1 with 15 0’s.) 

 As Enrico Bombieri puts it, “the failure of the Riemann Hypothesis would create havoc 

in the distribution of prime numbers” (qtd. in Thomas). So mathematicians believe the Riemann 

Hypothesis to be true, and yet—what if it isn’t? What if it is realized that the prim numbers are 

arranged in a non-random way—a predictable way? Then what would happen when we used 

those predictable primes to create encryption keys for our credit cards? It is if the Riemann 

Hypothesis fails that disorder will result. So mathematicians search for whether that disorder will 

happen. They seek confirmation that the primes are organized in a certain way—a random, 
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chaotic, patternless…yet unique and beautiful way. They seek confirmation of the Riemann 

Hypothesis. 

The Riemann Hypothesis:  

All non-trivial zeros of      are of the form   
 

 
   . 
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Notes 

 1. There are many justifications for classifying 1 as neither prime nor composite. First 

and foremost, 1 has exactly one divisor, so if we define primes to have two divisors, 1 cannot be 

prime. In addition, every composite number is the product of two or more primes, so any 

composite number should have three or more divisors—but 1 only has one, so we should not call 

it composite either. 

For more reasons as to why 1 is not prime, see the article “Why is the number one not 

prime?” at http://primes.utm.edu/notes/faq/one.html. 

2. For more formulas defining the zeta function, see http://functions.wolfram.com/ 

ZetaFunctionsandPolylogarithms/Zeta/ 

 3. Why do we use   (sigma) and   in our representation of complex numbers? We could 

use any two variables to represent the real and imaginary parts of  —for example, we could 

write       . However, we sometimes use   and   as independent numbers (in which case   

and   may have nonzero imaginary parts). So by following the convention of writing       , 

we emphasize that   and   are real numbers. 

 4. Figure 2 (slightly altered) from http://mathworld.wolfram.com/CriticalLine.html. 

 5. Figure 3 (slightly altered) from http://mathworld.wolfram.com/CriticalStrip.html. 

 6. Parts of Figure 4 from http://mathworld.wolfram.com/CriticalStrip.html. 

 7. The Prime Number Theorem is intimately related to the zeta function—in fact, it is 

equivalent to the statement that the non-trivial zeros of the Riemann zeta function never have 

real part 1 (Goodman and Weisstein). 

 8. Figure 5 generated from the interactive Wolfram Demonstration “The Riemann Zeta 

Function in Four Dimensions” at http://demonstrations.wolfram.com/ 
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TheRiemannZetaFunctionInFourDimensions/ 

 9. For an interactive graph showing how the values of      change as   moves along the 

critical line, see the Wolfram Demonstration at http://demonstrations.wolfram.com/ 

ValueOfTheZetaFunctionAlongTheCriticalLine/ 

10. Figure 7 generated from the interactive Wolfram Demonstration “Riemann Zeta 

Function near the Critical Line” at http://demonstrations.wolfram.com/ 

RiemannZetaFunctionNearTheCriticalLine/ 

 11. The Riemann zeta function is a special instance of a zeta function—all zeta functions 

are defined similarly to Riemann’s zeta function. There are also certain functions called L-

functions (because they are defined by L-series) that are special cases of zeta functions and are 

also similar to the Riemann zeta function. For more information, see the “Zeta Function” article 

at Wolfram MathWorld: http://mathworld.wolfram.com/ZetaFunction.html. 

12. For more information about characteristic polynomials and eigenvalues, see the 

“Eigenvalue” article at Wolfram MathWorld: http://mathworld.wolfram.com/Eigenvalue.html. 

 13. A Hermitian matrix is a matrix such that numbers that are “opposite” each other 

across the matrix’s main diagonal (below, dashed line) are complex conjugates of each other. 

That is, if one element is     , the element opposite it is     . An example of a Hermitian 

matrix is: 

 

 The Main Diagonal 

[
 
 
 
 
 
 

            

                

                

                          ]
 
 
 
 
 
 

 



Yang 37 

 

 

Because each entry on the main diagonal (bolded elements) is “opposite” itself, it must be its 

own complex conjugate, and so it must be real. However, other entries are not required to be real; 

they can have imaginary parts or even be “pure imaginary” numbers. In addition, a Hermitian 

matrix must be square (or else the main diagonal will not exist). 

 One special property of Hermitian matrices is that their eigenvalues must be real. 

 14.       is the “European” definition of the logarithmic integral (see the Wolfram 

Mathworld “Logarithmic Integral” article at http://mathworld.wolfram.com/ 

LogarithmicIntegral.html): 

      ∫
 

   
  

 

 

 

(The “American” definition of the logarithmic integral is represented by       and takes the 

integral from   to  .) 

15. Strictly speaking,  

             √      

means that for large enough   and some positive, real constant  , 

              √     

However, the prime counting function      is always positive, so we can ignore the absolute 

value signs. 
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Appendix A: Selected Proofs 

In this Appendix we shall prove certain results relevant to the Riemann zeta function, in 

particular concerning prime numbers and the behavior of the zeta function’s zeros. 

   

Proof 1: There are Infinitely Many Primes 

 The following proof was discovered by Euclid around 300 B.C.E., and is a classic 

example of proof by contradiction. First, suppose that there exist only   primes:              . 

(   is the  th prime.) 

Let               .   is not equal to any of the   primes and is a positive 

integer greater than 1, so it must be composite. In other words,   must be divisible by at least 

one of the   primes. 

However, for any one of the   primes,   is one more than a multiple of that prime. So   

itself cannot be a multiple of that prime—  is not a multiple of any of the   primes. 

Contradiction.  

 This contradiction implies that our original premise (“suppose that there exist only   

primes”) is false. Thus, we do not have a finite number,  , of primes: rather, there are infinitely 

many primes. 

 

Proof 2: Euler’s 1737 Result  

Here we derive Euler’s 1737 result, which relates the zeta function (here only dealing with real 

arguments) to the Euler product (the infinite product shown below): 

If   is a real number greater than 1, 
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 ∏
   

  
 
   

 

Our proof is as follows: first, note that  

              

                                    

where the sum on the left is the sum of all positive integers, and the product on the right is the 

product, taken over all primes  , of the infinite geometric series                . 

(This is the case because every positive integer has a unique prime factorization: a 

representation as the product of powers of prime numbers.) 

 In a similar way, 
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Rewriting the infinite geometric series within the parentheses, we have 

∑
 

  

 

 ∏
   

  
 
   

 

provided that  

|
 

  
|    

Since   is positive,    is positive, so we can rewrite this inequality as 

                     

Thus, if    , our rewriting of the infinite product is justified, and 
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∑
 

  

 

 ∏
   

  
 
   

 

is true algebraically. Numerically, however, we cannot say that the two expressions are equal 

unless they are finite numbers—specifically, unless the infinite sum converges. 

From a well-known result in calculus, the sum 

∑
 

  

 

 

converges if and only if    .  

 Thus, the equation 

     ∑
 

  

 

 ∏
   

  
 
   

 

holds when the real number   is greater than 1. 

 

Proof 3: Extension of Euler’s 1737 Result  

We now generalize Euler’s 1737 result to situations where   may be nonreal: 

     ∑
 

  

 

 ∏
   

  
 
   

 

if the complex number   has real part greater than 1. 

 This proof is very similar to Proof 2; in particular, we have 

∑
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provided that  

|
 

  
|    



Yang 41 

 

and that the infinite sum on the left converges. 

 Suppose that   has real part   and imaginary part  , and suppose that   is a positive real 

number. Since   is positive,    is also positive. In addition, it is known that the absolute value of 

    is 1 (although the details are beyond the scope of this text.) Thus 

     |     |       |   |            

 Since all primes   are positive real numbers, 

        

and so we wish to have 

|
 

  
|  

 

  
   

which, by logic similar to that in Proof 2, only holds if    . 

Moreover, it is known that if 

∑
 

  

 

 ∑|
 

  
|

 

 

converges, then 

∑
 

  

 

 

will too. (A word of caution: the reverse is not necessarily true.) Since it is known (using 

calculus) that  

∑
 

  

 

 

converges for    , this means that  

∑
 

  

 

 

will converge if          . 
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 Therefore  

     ∑
 

  

 

 ∏
   

  
 
   

 

if the real part of   is greater than 1. 

 

Proof 4:      Has No Zeros With Real Part Greater Than 1 

From Proof 3, we know that when        ,  

     ∏
              

  
 
   

 

Irrespective of the value of  , we can rearrange the fraction on the right side as 

   

  
 
  

 
               

    
  

 
  

    
   

 

    
 

which we note will only equal 0 if  

 

    
    

that is, if and only if     , which in turn can only be 0 if    . (As an informal proof of this 

statement, we observe that doing exponentiation with a nonzero base—multiplying the base by 

itself several times—should not result in 0.) 

 However, all primes   are positive—nonzero. Thus      for all   and  . So 

   

  
 
  

 

can never be 0, and 
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∏
   

  
 
   

 

is never zero. 

 Now, when        , 

     ∏
   

  
 
   

 

and the product on the right can never be 0. Thus when        ,       . In other words, 

the zeta function has no zeros to the right of the critical strip. 

 

Proof 5:      Has No Non-trivial Zeros With Real Part Less Than 0 

Our starting point is the functional equation of the zeta function: 

              (
  

 
)              

 Since both   and   are nonzero,   and      can never be 0. In addition, because of the 

definition of the gamma function,        is always nonzero. (See http:// 

mathworld.wolfram.com/GammaFunction.html for more information.) In addition, from Proof 4 

in Appendix A,          when          , or when        .  

Thus, if        , all the factors on the right side of  

              (
  

 
)              

except for    (
  

 
) are nonzero. Thus      can be 0 if and only if    (

  

 
)   …but the 

values of   for which this happens are simply the trivial zeros of the zeta function (see Appendix 

B for the full derivation of the trivial zeros). This means that the zeta function has no non-



Yang 44 

 

trivial zeros with real part less than zero—that is, it has no non-trivial zeros to the left of 

the critical strip. 

 

Appendix B: Derivation of the Trivial Zeros of the Zeta Function 

We know that for all (potentially nonreal)    , the following functional equation holds: 

              (
  

 
)              

This means that        when    (
  

 
)   , provided that every factor on the right side (  , 

    , and so on) is a finite number. (If a factor is infinite, then      is of the form    , which 

is the product of an infinite number of infinitesimally small quantities…a product which is not 

always 0.) The behavior of the sine function is such that it equals zero every time its argument 

(the part inside the parentheses) is a multiple of  , which in this case happens when   is a 

multiple of 2.  

This suggests that (real) multiples of 2 should be considered trivial zeros. Is this the case? 

We know from Proof 4 in Appendix A that      has no zeros when the real part of   is 

greater than 1, so we need not even consider the case where   is a positive multiple of 2 (since 

this causes the real part of  —  itself—to be greater than 1).  

In addition, when    ,             is infinite, leading      to be of form    . 

This means that     may not be a zero of the zeta function (and in fact, it turns out not to be). 

So what about negative multiples of 2? When   is a negative integer,     is a positive 

integer, so both        and        are finite quantities. (This is since if   is a positive 

integer,             , which is finite. In addition,        is finite provided that    .) 
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Moreover, for    , we know that           and    (
  

 
) are all finite numbers.  

Thus when   is a negative multiple of 2,    (
  

 
)    and all factors on the right side of  

              (
  

 
)              

are finite, which means that         So the trivial zeros of the zeta function are the negative 

multiples of 2. 
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